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Abstract: This article proposes a novel method for managing usage counters within an anonymous
credential system, addressing the limitation of traditional anonymous credentials in tracking repeated
use. The method takes advantage of blockchain technology through Smart Contracts deployed on the
Ethereum network to enforce a predetermined maximum number of uses for a given credential. Users
retain control over increments by providing zero-knowledge proofs (ZKPs) demonstrating private
key possession and agreement on the increment value. This approach prevents replay attacks and
ensures transparency and security. A prototype implementation on a private Ethereum blockchain
demonstrates the feasibility and efficiency of the proposed method, paving the way for its potential
deployment in real-world applications requiring both anonymity and usage tracking.

Keywords: attribute-based credentials; pseudonyms; privacy-preserving credentials; self-blinded
scheme; security proofs; user-centred system; zero knowledge proofs; trust-less; access counter

1. Introduction

Privacy is, nowadays, one of the biggest challenges in our digital life [1]. Anonymity
seems to be a way to solve the challenge of maintaining privacy. Anonymous credentials [2],
which assert an identity while maintaining privacy, are the most widely accepted.

Anonymous credentials are commonly implemented as attribute-based credentials
or ABC [3], and they guarantee the protection of user data and preserve privacy and
anonymity. It is based on trusted entities, also known as the Attribute Provider AP , that
generates irrefutable cryptographic evidence about the user’s attributes. These proofs are
called Verifiable Attributes (VA). Furthermore, users store these VAs and use them wherever
and whenever they want. Users can subsequently use the VAs to demonstrate possession
of the attributes to a third party without revealing their identity if the VA does not identify
them, and the third party can verify those attributes if it trusts AP . For example, a user
wants to purchase an age-restricted item on a website but wishes to remain anonymous,
avoiding sharing their name, age, or date of birth. To do so, a VA can be obtained from
the Civil Registry, which will act as AP . However, as stated in article [4], these credentials
are of no use when repeated uses must be detected. The article proposes a method for
detecting credential reuse using a unique, anonymous identifier that cannot be linked to
the user’s real identity.

The main objective of this proposal is to extend the protocol presented in [4] in such
a way that it allows the control of a maximum number of usages of a given credential.
Such enforcement is carried out using blockchain technology through the implementation
of Smart Contracts, a tool that provides the required robustness and transparency for
authentication environments. It allows the user to have control over increments by forcing
the need to provide a Zero Knowledge Proof (ZKP) that proves the possession of a private
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key and the agreement on the value to be incremented. This, at the same time, prevents
replay attacks. This is achieved by agreeing on the counter’s increment.

The system involves three different entities: the User (U ), an Attribute Provider (AP),
accountable for proclaiming certain user attributes, and a Service Provider (SP), granting
access to a service. As detailed in the use case in Section 6, consider a user (U ) whose income
is below the minimum wage, a requirement certified by AP . This user is then granted
thirty free underground trips per month. The process involves U obtaining credentials
from AP , storing them locally, and presenting these blinded credentials along with proof
of private key possession to SP .

By use of a Smart Contract, SP verifies U ’s data and initialises the counter on the
blockchain. Subsequently, for each use, U must provide a unique identifier and proof of
access verification, which SP will verify using the same Smart Contract.

Ethereum [5], a well-known blockchain technology, offers a decentralised, Turing-
complete computer. This platform enables reliable and publicly verifiable execution of
Smart Contracts, making it particularly suitable for enforcing security checks. This research
proposes a set of Smart Contracts designed to manage the entire life cycle of a counter on
the Ethereum network.

The rest of this article is structured as follows. Section 2 reviews the current state of the
art in electronic ticketing proposals, focusing on privacy implementations and other key
goals. Section 3 introduces the protocol to be enhanced with the improvements discussed
above. Section 4 explains how to achieve the objectives and provides a detailed description
of the protocol. Section 5 details the security evaluation of the proposed solution, and
Section 6 explores, in detail, a use case of the proposed protocol. Finally, Section 7 presents
the conclusions with additional ideas for future work.

2. Literature Review

Ethereum [5] provides a reliable and verifiable way to execute Smart Contracts, es-
pecially to enforce security checks, and ensures the life cycle of access counters. For this
reason, the research is centred on Ethereum-based implementations.

In [4], the authors show a reusable anonymous credential protocol based on ABC [6,7],
Verheul self-blinding schemes [8], and modified short ZSS (Zhang, Safavi-Naini, and
Susilo) signatures on bilinear pairings over elliptic curves [9]. This approach aligns with
the goals outlined in the cited article. One of the drawbacks of this solution is the use
of elliptic curve arithmetic, which consumes a large amount of gas. However, with the
use of pre-compiled contracts introduced with the Ethereum Improvement Proposal, it
is possible to reduce this consumption. More specifically, EIP-196 [10] and EIP-197 [11]
provide pre-compiled contracts for addition and scalar multiplication on the elliptic curve
alt_bn128, and pre-compiled contracts for optimal Ate pairing [12] check on the elliptic
curve alt_bn128. Another improvement is in the choice of the hash function used, using
keccak instead of sha256, which is more expensive [5].

These access counters might be seen as electronic tickets, and for this purpose, a
detailed analysis of electronic ticket systems in the literature is required. This research
focuses on systems that use blockchain as the main backend.

Many electronic ticketing systems, usually for event tickets, face the bad behaviour of
scalpers who damage the customer’s interest and disrupt the normal order of the market.
In [13], the authors describe a system based on the Consortium blockchain, where the control
and management of the environment are handled by members of the consortium, and together
with a regulatory mechanism, they effectively reduce the scalper’s profits. This system does
not face forward to a multi-usage system because it has no sense of its purpose.

In the same scope of event ticketing, in [14], the authors propose a ticket system
with a QR code, but it is not multi-usage, does not use a blockchain backend, and is not
anonymous. Another system for one-time ticketing has been developed in [15]. It uses
Anonymous Credentials to guarantee user privacy, but again it does not use blockchain as
the backend.
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Feulner et al. [16] demonstrated that Self-Sovereign Identity [17] based event ticketing
facilitated the practical implementation of the centralised exchange model to enable efficient
secondary market control.

Another field where electronic tickets are introduced is the railway industry. J.D. Preece
in [18] introduced a digital ticketing platform using blockchain. They used IBM’s Hy-
perledger Fabric Framework to design an architecture that distributes tickets among all
participants. However, in this approach, even if they took care of multi-usage through
limited time, they did not check or implement the number of times the ticket was used.

Ricard Borges et al. in [19] proposed a system that includes reusability in the sense
that a single electronic ticket allows one to make several journeys. The main goal of this
system is to preserve privacy. As in the previous system, multi-usage is limited to time and
not to the number of times it is used. There are other proposals [20–22] that allow transfers
so that public transportation passengers can continue their journey on other buses or trains.
In systems that limit the number of transfers, there is usually a mechanism in which an
electronic ticket contains a hash chain whose size depends on the maximum number of
transfers allowed. In this context, Stockburger et al. [23] proposed a solution involving
a Self-Sovereign Identity. They proposed a credential to travel across Europe but not an
electronic ticket system similar to an access counter, as the one described in this paper.

In [24], a blockchain-enhanced privacy-preserving electronic ticket system for IoT
devices has been built. However, it lacks multi-use support, which is required to implement
counter access.

After the evaluation of some of the research based on electronic ticketing
services [13–16,18–22,24–26] found in the literature, the conclusion is that most of these are
focused on granting access to events; solving problems on ticket reselling in the secondary
market [14,16,26], privacy protection [15,16,23,24], bot protection and scalping [13,14],
while some also envisage anonymity [16,23,25]. Other research has been oriented towards
the transport industry re-usability [19–22]. Despite their strengths, existing solutions lack
a crucial combination: anonymity, multi-use capability, and safeguards against malicious
service providers (SP) potentially engaging in replay attacks.

3. Background

As introduced earlier, this proposal builds upon the anonymous credential authentica-
tion protocol described in [4] based on verifiable attributes. This section offers a general
overview of that protocol. Table 1 provides a detailed guide to the notation used throughout
this work.

The anonymous credential authentication protocol defines three distinct roles: the
user (U ), who seeks authentication, the attribute provider (AP), who holds information
about the user, and the service provider (SP) who offers services to the user contingent
upon predefined conditions. Each of these roles has corresponding pairs of private and
public keys, denoted by (skU , pkU ), (skAP ,pkAP ), and (skSP , pkSP ), respectively.

The anonymous credential authentication protocol contains two sub-protocols. The
credential issuance protocol, between U and AP , and the credential presentation protocol,
between U and SP .

The detailed steps for the credential issuance protocol are the following:

1. U sends the scope S and their public key pkU to AP .
2. AP computes the verifiable attribute δAP as follows:

δAP = (H(S) + skAP )−1 · pkU

that links the scope S with U ’s public key through the private key of AP .
3. AP sends U the computed δAP .
4. U computes their idU :

idU = H(S)−1(skU + H(S))−1 · pkU (1)
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Table 1. Notation guide.

Notation Meaning

AP Attribute Provider
SP Service Provider
idU User identifier
idSi

U User identifier for scope Si
skU User secret key
s̃kU Fake User secret key
skAP Attribute Provider secret key
skSP Service Provider secret key
δAP Signature of Attribute Provider
P Generator of the cyclic group G
sk′U Blinded User secret key
δ′AP Blinded signature
n Maximum number of authentications
e(, ) Pairing function
U User
Ã Adversary
S Scope (arbitrary string)
˜idU Fake User identifier
pkU User public key
p̃kU Fake User public key
pkAP Attribute Provider public key
pkSP Service Provider public key
H(S) Hash of scope
b Random blind factor
pk′U Blinded User public key
(R′, ti) Modified NI-Schnorr ZKP
i Auth counter in [0, · · · , n]

Once this protocol has been completed, U can anonymously authenticate to SP using
the credential presentation protocol. This protocol has the following steps:

1. U chooses b ∈R F∗
q as a factor to blind the values needed to obtain the anonymous

credentials and computes C′:

sk′U = b · skU
pk′U = sk′U · P

δ′AP = b · δAP
P′ = b · P

pk′AP = b · pkAP
C′ = b · H(S) · P

(2)

2. U also computes a NI-Schnorr ZKP by choosing r′ ∈R F∗
q and obtaining:

R′ = r′ · P

h′ = H(R′)

t′ = h′ · sk′U + r′
(3)

3. U sends SP the identifier idU , the anonymous credentials δ′AP , pk′U , pk′AP , P′, C′, and
the NI-Schnorr ZKP proof of the private key (R′, h′, t′).

4. SP verifies that pk′AP is the blinded value of pkAP by computing:

e(pk′AP , P) ?
= e(pkAP , P′) (4)
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5. SP also verifies the correction of the credentials:

e(C′ + pk′AP , δ′AP )
?
= e(P′, pk′U ) (5)

6. SP continues to verify the correction of idU by computing:

e(C′ + pk′U , H(S) · idU )
?
= e(P, pk′U ) (6)

7. Finally, SP verifies that U possesses the private key that checks the correctness of the
NI-Schnorr ZKP as follows:

t′ · P ?
= R′ + pk′U · h′ (7)

4. The Proposal

Although the protocol outlined in the previous section provides anonymity, unlinka-
bility from real identity, and traceability within scope S, it lacks a mechanism for multiple
authentications within the same scope. The only current solution is a naive approach
where SP counts the total authentications. However, this method fails to protect U from
malicious behaviour by SP , who could potentially manipulate the counter.

4.1. General Overview

In this proposal, blockchain technology is used through Smart Contracts to provide
a secure implementation of the multiple authentication mechanism that protects U in
front of a malicious SP . The idea is that the Smart Contract manages the life cycle of
every authentication in order to properly restrict the total number of authentications to the
predefined maximum n.

Figure 1 illustrates the overall protocol, outlining the three defined roles and highlighting the
blockchain’s new role within the system. A detailed explanation of each protocol step follows.

0. First and only once, SP deploys the Smart Contract initialised with the public key of
a trusted AP .

1. U begins the protocol by requesting AP for a credential for a given scope S.
2. After user identity and attribute verification, AP provides U with a credential. This

credential is valid only for the requested scope S.
3. U stores the credential and computes the cryptography data and proofs required to

continue with the protocol.
4. U presents the credentials, proof of possession of the private key, and knowledge of

the maximum value of the counter to obtain an access counter from SP .
5. SP calls the Smart Contract that verifies the credentials and the ZKPs, and all of

them are valid, it stores a counter on the chain, identified by the hash of credentials,
with a starting value of 0, the maximum value n, and the blinded public key of U . If
verification fails, the protocol is aborted.

6. SP provides or refuses the counter.
7. To use the counter, U presents their unique ID and proof of possession of the private

key and knowledge of the next value.
8. SP calls the Smart Contract that retrieves the actual value, the maximum value, and

the blinded public key of U . Then, it checks the proof of possession of the private key
and the knowledge of the next value. The Smart Contract also checks that the number
of iterations is less than the maximum allowed counter value. If the verification holds,
it provides the service; otherwise, the service is refused.

9. SP provides or refuses the service.
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User (U)

Blockchain - Smart Contracts

Service Provider (SP)Attribute Provider (AP)

(0) Deploy Smart Contract

(1) Request credential

(3) Store credentials

Computes proofs

(4) Present credential

and proofs

(5) Counter creation

(6) Provide counter

or refuse

(7) Present counter id

and proofs

(8) Counter consumption

(9) Provide service

or refuse

(2) Provide credential

Figure 1. Overview of the protocol interactions.

4.2. Protocol Design Rationale

Creating a counter begins with a Smart Contract requiring a ZKP demonstrating U ’s
private key possession associated with their unique identifier (idU ) and agreement on a
maximum usage limit. Each subsequent credential use, which increments the counter, also
requires a ZKP proving private key possession and agreeing upon the increment value.
This ZKP-based approach safeguards users against potential SP misconduct by mandating
user consent for counter value increments. To achieve this, the protocol uses parameters n
(maximum uses) and i (increment value) within the computation of NI-Scnorrr ZKPs.

The previously detailed protocol is then modified to introduce the use of the new
variables. In Step 2 of the original protocol (Formula (3)), the number of times the credential
has been used, i, and the hash of the anonymous credentials, H(idU ), are added to the ZKP
computation. U then computes ZKPs by choosing r′ ∈R F∗

q and modifying the computation
as follows:

R′ = r′ · P

hi = (i + 1) · H(idU )

ti = hi · sk′U + r′
(8)

where H(idU ) is the counter identifier and ti is the ZKP for each credential usage i for
the total possible usages n. Verification in Step 7 (Formula (7)) is then to be carried out
as follows:

ti · P = (hi · sk′U + r′) · P

= (i + 1) · H(idU ) · sk′U · P + r′ · P

= r′ · P + (i + 1) · H(idU ) · pk′U
= R′ + (i + 1) · H(idU ) · pk′U

(9)

4.3. Credential Issuance Protocol

The credential issuance protocol comprises Steps 1, 2 and 3 of Figure 1 and is analo-
gous to the credential issuance protocol proposed in [4]. The details of this protocol are
described below.

1. U sends the scope S and their public key pkU to AP .
2. AP computes the verifiable attribute δAP as follows:

δAP = (H(S) + skAP )−1 · pkU
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that links the scope S with U ’s public key through the private key of AP , and sends
δAP back to U .

3. U stores the computed δAP received from AP and computes and stores idU :

idU = H(S)−1(skU + H(S))−1 · pkU (10)

4.4. Access Counter Creation Protocol

Once the credential issuance protocol has been executed, and before U accesses the
service for the first time, U must establish the maximum number of uses n for which its
credential can be accepted. This value is determined through the access counter creation
protocol performed by U and SP , and comprises Steps 4, 5, and 6 from Figure 1 as depicted
in Figure 2.

The detailed steps for this protocol are the following:

1. U currently has δAP , H(S), skU , pkU , n, and idU
2. U chooses b ∈R F∗

q as a factor to blind the values needed to obtain the anonymous
credentials.

3. U computes:

sk′U = b · skU
pk′U = sk′U · P

δ′AP = b · δAP
P′ = b · P

pk′AP = b · pkAP
C′ = b · H(S) · P

(11)

4. U also computes a NI-Schnorr ZKP by choosing r′ ∈R F∗
q and doing:

R′ = r′ · P

tn = (n + 1) · H(idU ) · sk′U + r′
(12)

5. U sends SP the identifier idU , the anonymous credentials δ′AP , pk′U , pk′AP , P′, C′, n,
and the NI-Schnorr ZKP proof of the private key (R′, tn) by calling the Create function
of SP who, in turn, calls a Smart Contract with these values.

6. The Smart Contract verifies that pk′AP is the blinded value of pkAP by computing:

e(pk′AP , P) ?
= e(pkAP , P′) (13)

7. The Smart Contract also verifies that the credentials are valid:

e(C′ + pk′AP , δ′AP )
?
= e(P′, pk′U ) (14)

8. The Smart Contract verifies that idU is also valid by computing:

e(C′ + pk′U , H(S) · idU )
?
= e(P, pk′U ) (15)

9. The Smart Contract verifies that U possesses the private key checking the correctness
of the NI-Schnorr ZKP as follows:

tn · P ?
= R′ + (n + 1) · H(idU ) · pk′U (16)

10. Finally, the Smart Contract persists on an array indexed by H(idU ) an object containing
n, the maximum number of usages, the counter of usages (initialised to 0), and pk′U ,
the blinded public key of the user.
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U SP Blockchain/Smart Contract

(1) δAP , H(S), skU , pkU ,
n, idU

(2) U chooses b ∈R Z∗
q

Blinding credentials

(3) Computes blind values:
sk′U = b · skU
pk′U = sk′U · P
δ′AP = b · δAP
P ′ = b · P
pk′AP = b · pkAP
C ′ = b ·H(S) · P
ZKP generation

(4) Computes NI-Schnorr
ZKP choosing:

R′ = r′ · P
tn = (n+1)·H(idU )·sk′U+r′

Access

Create

(5) Call SC

Result

FAIL

SUCCESS

Verify blind pk′
AP

(6) Verifies

e(pk′AP , P )
?
= e(pkAP , P ′)

Blind credential validation

(7) Verifies blind credential δ′AP
e(C ′ + pk′AP , δ

′
AP)

?
= e(P ′, pk′U )

idU verification

(8) Verifies identifier idU
e(C ′+pk′AP , H(S)·idU ) ?

= e(P, pk′U )

ZKP validation

(9) Verifies U private key and agree-
ment over max counter usages:

tn · P ?
= R′ + (n+ 1) ·H(idU ) · pk′U

Access counter creation

(10) Create access counter storing n
and pk′U

δ′AP , pk
′
U

pk′AP , P
′

idU , C ′,n
(R′, tn)

δ′AP , pk
′
U

pk′AP , P
′

idU , C ′,n
(R′, tn)

revert

revert

revert

revert

succes

Denied

Granted

Figure 2. Data and call flow between U , SP and the blockchain during the access counter creation protocol.

If the Smart Contract execution is successful, the access counter is ready to use;
otherwise, execution is reverted and no counter is created.

4.5. Access Counter Usage Protocol

Once the access counter creation protocol has been performed, U can use the creden-
tials n times executing the access counter usage protocol, depicted in Figure 3.

U SP Blockchain/Smart Contract

(1) sk′U , pk
′
U , i, idU

ZKP generation

(2) Computes NI-Schnorr
ZKP
R′ = r′ · P
ti = (i+1)·H(idU )·sk′U+r′

Access

Consume

(3) Call SC

Result

FAIL

SUCCESS

ZKP verification

(4) Verifies U private key and
agreement over counter increment
by retrieving i value from chain
and computing :

ti ·P ?
= R′+(i+1) ·H(idU ) · pk′U

idU
(R′, ti)

idU
(R′, ti)

Denied

Granted

revert

succes

Figure 3. Message exchange between U and SP during the i-th iteration of the access counter
usage protocol.

The details of the protocol are as follows:

1. U currently has the secret key, sk′U , and the idU .
2. Using sk′U , r′, and idU , U computes a NI-Schnorr ZKP by doing:

ti = (i + 1) · H(idU ) · sk′U + r′ (17)

3. U sends idU , R′ and ti to SP , by calling the Consume service, and SP calls a Smart
Contract with these values.

4. The Smart Contract retrieves the object indexed by H(idU ) from storage. If it does not
exist, it reverts the execution. Otherwise, it checks:

ti · P ?
= R′ + (i + 1) · H(idU ) · pk′U (18)
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If the Smart Contract execution is successful, SP could provide the service; otherwise,
if the execution is reverted, SP should deny the service.

4.6. Pseudo-Code

This section provides the pseudo-code (Listing 1) of the implemented Smart Contract.
Each formula in the previous sections has its own function TESTXX(). Each returns a
Boolean value as the result of their evaluation. Note that the variable params is a struct with
the parameters needed in the function. The assert function reverts execution of the Smart
Contract if the evaluation is false.

storage bytes pkAP
s t r u c t record {

in teger max_value
in teger current_value
bytes bl inded_publ ic_key_user

}
storage records array of record

const ruc tor counter ( params )
{

pkAP = params . pkAP
}

function Create ( params ) {
a s s e r t ( not e x i s t records [ hash ( params . idu ) ] )
a s s e r t ( TEST13 ( params ) )
a s s e r t ( TEST14 ( params ) )
a s s e r t ( TEST15 ( params ) )
a s s e r t ( TEST16 ( params ) )
c r e a t e record r with :

max_value = params . max_value
current_value = 0
bl inded_publ ic_key_user = params . bl inded_publ ic_
ey_user

s t o r e records [ hash ( params . idu ) ] = r
}

function Consume ( params ) {
a s s e r t ( e x i s t records [ hash ( params . idu ) ] )
r = records [ hash ( params . idu ) ]
a s s e r t ( TEST18 ( params , r . bl inded_publ ic_key_user ) )
a s s e r t ( r . current_value < r . max_value )
r . current_value++
s t o r e records [ hash ( params . idu ) ] = r

}
}

Listing 1. Smart Contract pseudo-code.

5. Security Analysis

A security evaluation of the original authentication protocol can already be found
in the reference article [4]. The security evaluation of the enhancements of the proposed
protocol is provided in this section. Note that the checks are performed on the chain by
using Smart Contracts, which offer integrity and reliability.
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5.1. Design Decisions

I confirm that starting with step 0 indicates that this step is taken only once at the
beginning and not repeated in subsequent iterations.

Three different choices to modify Formula (3) are presented in order to introduce n
and i, denoting the maximum number of uses and the increment value, respectively, in the
calculation of the NI-Scnorrr ZKP.

The first option to introduce i in the computation of ti is to take t and use it to compute
each ti by multiplying it by i. Formula (3) becomes ti = i · t = i · (H(idU ) · sk′U + r′), ∀i ∈
[0 . . . n]. The problem in this case is that when t1 is known, it is easy to forge t2 by calculating
t1 + t1, and so on with t3,· · · ,tn.

The second option to introduce i in the computation of ti is to take t and multiply by i
the term of t where r′ appears. Formula (3) becomes ti = h′i · sk′U + i · r′, ∀i ∈ [0 . . . n]. Note
that, in this case

ti+1 = (i + 2) · R′ + pk′U · H(idU )

= R′ + (i + 1) · R′ + pk′U · H(idU )

= R′ + ti, ∀i ∈ [0 . . . n]

the problem is knowing R′ and adding it to ti, anyone can then forge ti+1 and so on.
The third and final choice involves multiplying the term that contains the private key,

Formula (3) becomes ti = R′ + i · pk′U · H(idU ). Nobody can forge ti without knowing the
private key. This is the method chosen for this study.

Once the option has been chosen on how to introduce n and i into the ZKP, a problem
appears when this value is equal to zero. The private key would be multiplied by zero and
be rendered null. Therefore, in the computation of ti, the multiplication factor becomes
i + 1 to avoid multiplication by 0.

All threats to the current protocol are based on the robustness of ZKP; therefore, this
robustness has to be proved. From Formula (8), the proof is (R′, ti) with public values i,
idU , and private sk′U is calculated as:

R′ = r′ · P

ti = (i + 1) · H(idU ) · sk′U + r′

As long as sk′U and r′ are private to U , nobody except U , can forge a ZKP. Because of
the discrete logarithm problem (DLP) in additive groups, it is not feasible to compute sk′U
nor r′ from pk′U and R′, respectively.

With these results, the robustness of the protocol is proven in the presence of threats
found. The main threats are described as:

• The use of an arbitrary idU where a malicious U tries to forge a counter without the
authentication creation phase.

• A misbehaviour of SP in the counter creation phase that attempts to create a counter
with an incorrect maximum usage value.

• A replay attack performed by SP .
• A misbehaviour of SP trying to forge an invalid ti.

5.2. Use of Arbitrary idU without Creation

Counter data are stored on the chain, and only the Smart Contract can add this data
after successfully passing all the checks. To use the counter, it has to be created before. This
ensures that no one can use an arbitrary counter before creation, where credentials checks
are performed.

5.3. A Misbehaviour of SP in the Counter Creation Phase

By design, the Smart Contract verifies tn. Since it is computed as:
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tn = (n + 1) · H(idU ) · skU + r′

it can only be provided by someone in possession of the private key, r′ approving the value
of n.

5.4. A Replay Attack

By associating each ti with a counter value i and including it in the computation,
replay attacks can be prevented because a valid proof ti for a counter value of i becomes
invalid for a counter value of i + 1. Each ti is invalidated after use. Only those with a
private key can compute a valid ti+1 for the counter value of i + 1. Only the Smart Contract
can alter the value of a counter after successfully passing all checks.

5.5. A Misbehaviour of SP
Enforced by the Smart Contract, without knowing the private key, nobody should be

able to forge a valid ti. Therefore, a malicious SP cannot increment the counter without
the user’s agreement that provides the corresponding ti.

6. Use Case in Detail

As noted in the Introduction, a government bill could grant users (U ) earning below
the minimum wage thirty free underground trips per month.

In this use case, AP could be an entity like a tax agency or bank, and SP could be the
underground service company. The scope S is defined as the string consisting of the first
letter of the service, the number of the month, and the year in which the users are entitled
to the service. “U0123” would be the scope for January 2023, “U0223” for February 2023,
and so on.

The steps for a given month are as follows:

1. U generates their keys skU and pkU that could always be the same or that could be
changed every month. This does not affect the protocol.

2. In January, U obtains (using Formula (1)) the unique identifier idU for the scope S
equal to “U0123”.

3. U refers then to AP and identifies themselves, proving that in the previous month,
it had income below the minimum wage, and obtains the δAP for the scope "U0123"
that entitles them to thirty underground trips in January. AP obtains δAP using
Formula (2), binding the attribute to skU .

4. The δAP attribute is known by AP that can associate it with a user to control whether
it has already been given to them or not.

5. Before usage, U blinds δAP and performs the calculations in Formula (2) to obtain
the anonymous credentials from the scope “M0103” which entitles them to thirty
underground trips during January 2023. These anonymous credentials are: δ′AP , pk′U ,
pk′AP , P′, and C′.

6. To begin using trips, U should obtain a counter. To do so, U presents its anonymous
credentials calculated in the previous step, idU , and the proof of possession of their
own private key. This proof is ti and is calculated using Formula (8) with i equal to
the number of trips, that is, t30. This proof can be checked with Formula (9) given the
anonymous credentials and idU . These checks are implemented in the Create method
of the Smart Contract.

7. With this data, SP calls the Create function of the Smart Contract to create a counter
valid for thirty accesses, no more, no less.

8. Only U can use this counter, using ti each time, where i is the number of uses stored
in the Smart Contract, along with idU and their public key. If U keeps this tis secret,
only they can consume the ticket each time. This prevents anyone who does not know
the private key from incrementing the counter.

9. Once the ticket has been created, U must calculate the ti that corresponds to the
current value of the counter and send it to SP along with its idU to be able to use
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it. Checks of these values are implemented in the Consume method of the Smart
Contract, and the counter should be less than or equal to the maximum number.

10. When SP receives a request to consume a counter, it only needs to call the Consume
method of the Smart Contract with the parameters of the request. If the execution
is successful, it grants access to the underground service; otherwise, it should deny
access to the service and revert the transaction. The problem could be:

• ti being incorrect
• an attempted fraud
• the ticket is sold out

7. Conclusions and Future Work

This article proposes a novel method for managing usage counters within a system
designed to ensure user anonymity. The core concept revolves around establishing a
predetermined maximum number of uses at the time of counter creation, with explicit
agreement from the user. Each subsequent use also needs user consent, ensuring ongoing
transparency and control.

To facilitate this secure and auditable process, all checks and validations are handled by
a Smart Contract deployed on the Ethereum blockchain. This decentralised storage mech-
anism guarantees the immutability and public visibility of transaction records, fostering
trust and fairness within the system.

To validate the practicality and efficiency of the proposed approach, a prototype imple-
mentation has been conducted on a private Ethereum blockchain. Preliminary experimental
results denote that the proposed method can be executed with reasonable computational
costs, paving the way for its potential deployment in real-world scenarios requiring both
anonymity and usage tracking, which will be the focus of the next issue.

For the purpose of this study, the scenario has been simplified by assuming that the
service provider (SP) deploys the Smart Contract initialised with the attribute provider’s
(AP) public key. This assumption has been made because SP is the entity that directly
uses the Smart Contract for authentication. However, it is important to note that this is
not mandatory. In principle, any actor could deploy the Smart Contract. If a different
party were to take on this role, an additional mechanism would be required to publicly
disseminate the contract address. This may be explored in future research endeavours.

Another issue to be addressed in the future is the introduction of temporal restrictions
in the use of ZKP to permit sequenced uses without user intervention, targeting periodic
renewals, for example.

Replacing the usage of EIP-196 and EIP-197, which work with the elliptic curve
alt_bn128, with EIP-2537 [27], which works with BLS12-381 curve, thus offering more
security [28] and less gas consumption could also be explored in the future. At the time
of writing this paper, EIP-2537 is in the peer review phase and not available on Ethereum
Main Net.
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